If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6.49x^2+2x-15=0
a = 6.49; b = 2; c = -15;
Δ = b2-4ac
Δ = 22-4·6.49·(-15)
Δ = 393.4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-\sqrt{393.4}}{2*6.49}=\frac{-2-\sqrt{393.4}}{12.98} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+\sqrt{393.4}}{2*6.49}=\frac{-2+\sqrt{393.4}}{12.98} $
| 3(x-7)=200 | | -1/7=x+1/2/3 | | 3(7y-6)^2-166=26 | | 21/56=15/x | | 3(7y-6)^2=26 | | X=-0.5t | | c^2-8c-8=0 | | (k-4/5)=12 | | 12+2(w-9)=3(w-12) | | 5k+6k=-33 | | 3y=(24-19y)^(1/2) | | 5k+6k=-23 | | 180=x-26x-26 | | c^2-10c-8=0 | | 2(a+7)-7=-9 | | 7-2(1-4d)=-18 | | -1/4y-8=-12 | | 5=18-w | | 3-2y=42 | | 105x=184 | | 11^3x=8 | | 0.70x+0.05(4-x)=0.10(-63) | | 1/2k-(k+(1/2))=1/4(k+1) | | 2(t-5)=52 | | 5x-1/7=3x/4- | | 1/5x+11=3-3/5× | | 5x-1/7=3x/4 | | 94(x+9)-7=25 | | 5(x-4.1)=1.5 | | 4(4x-1.3)=8x-5.2 | | -0.3x+4.12=-0.5x+8.72 | | 4.4x-58=2.8x+6 |